## Subject prediction using semantic embedding

Rob Koopman and Shenghui Wang OCLC EMEA

## Agenda

- 1. Introduction: semantic embedding
- 2. Ariadne random projection
- 3. Automatic subject assignment
- 4. Dataset
- 5. Evaluation

### Introduction: Semantic embedding

- Statistical Semantics [furnas1983,weaver1955] based on the assumption of "a word is characterized by the company it keeps" [firth1957]
- Distributional Hypothesis [harris1954, sahlgren2008]: words that occur in similar contexts tend to have similar meanings

- Word embedding: words are represented in a continuous vector space where semantically similar words are mapped to nearby points ('are embedding nearby each other')
- Two main categories of approaches: global co-occurrence count-based methods (e.g. LSA) *vs* local context predictive methods (e.g. word2vec)
- A desirable property: computable similarity

#### Ariadne random projection



- Each entity is embedded as a 256-byte vector
- Each document is embedded as the weighted average of word embeddings
- Cosine similarity reflects semantic similarity

### Automatic subject prediction

- Our hypothesis: A document is more likely to be indexed with subjects that are most related to it.
- Can embedding-based similarities help us to find suitable subjects?

#### **Experiments:**

- Astro dataset: 111k articles published in 59 Astronomy and Astrophysics journals (Downloaded from <a href="http://www.topic-challenge.info/">http://www.topic-challenge.info/</a>)
- 95% for training, 5% for testing
- The training set contains 18791 different subjects on average 9 per article.
- For each testing document, we compute a list of most related subjects
- Measure precision/recall at N

### Results:



#### Actual vs predicted

# Laboratory Detection of FeCO+ (X 4 $\Sigma$ –) by Millimeter/Submillimeter Velocity Modulation Spectroscopy

The millimeter/submillimeter spectrum of the molecular ion FeCO+ (X 4 $\Sigma$ -) has been recorded using velocity modulation spectroscopy. The molecular ion was created in an AC discharge of Fe(CO) $_5$  and argon. Twenty-seven rotational transitions, each consisting of four fine-structure components, were measured in the range 198-418 GHz. The data were fit with a case b Hamiltonian, and rotational, spin-rotation, and spin-spin constants were determined. Because of the presence of higher order spin-orbit interactions, probably caused in part by a nearby  $_4\Pi$  excited state, numerous centrifugal distortion terms were needed for the spectral analysis. The value of  $_7$ , the third-order spin-rotation constant, was also remarkably large at -72.4 MHz. Rest frequencies for FeCO+ are now available for interstellar and circumstellar searches. This species may be present in molecular clouds, where CO is abundant and gas-phase iron should be in the form of Fe+. Molecular ions such as FeCO+ could be the hidden carriers of metallic elements in such clouds.

# Actual vs predicted

| Actual                 | Cosine | Predicted (top 10)    | Cosine |
|------------------------|--------|-----------------------|--------|
| astrochemistry         | 0.5091 | ism:molecules         | 0.6223 |
| interstellar           | 0.1801 | ${f astrochemistry}$  | 0.5091 |
| ism:molecules          | 0.6223 | ${f chemistry}$       | 0.5010 |
| line:identification    | 0.3815 | molecular data        | 0.4847 |
| chemistry              | 0.5010 | irc + 10216           | 0.4644 |
| envelope               | 0.3356 | ism:abundances        | 0.4639 |
| hydrocarbons           | 0.0662 | radio lines:ism       | 0.4613 |
| methods:laboratory     | 0.3394 | clouds                | 0.4115 |
| molecular data         | 0.4847 | rotational excitation | 0.4062 |
| stars:agb and post agb | 0.2518 | molecular processes   | 0.3946 |

### Information retrieval using subjects

- Make an embedding of the human assigned subjects and the of the top 9 machine assigned subjects of a record in the test set.
- Try to find the records in the data set.

|         | First result | <=10 | <=20 | <=30 |
|---------|--------------|------|------|------|
| Human   | 11%          | 41%  | 53%  | 60%  |
| Machine | 7%           | 33%  | 47%  | 56%  |

#### Conclusions

- Humans are on average a bit better in finding the right mix of subject headings than our algorithm.
- In the case of an astronomy paper It is not so easy to judge whether subject headings are correct.
  - o In cases were the machine is better than the human our first test is a harsh judge.
  - When the algorithm wrong in the second test the embedding can still be somewhat reasonable.
- Automatic subject assignments can clearly help the user.
- Our algorithm is in general not capable to find all subject headings.

#### What's next

#### Deep Learning for Extreme Multi-label Text Classification

Jingzhou Liu, Wei-Cheng Chang, Yuexin Wu, Yiming Yang

But our method is orders of magnitudes faster ...